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Abstract

In recent years, research on learning with noisy labels has focused on devising
novel algorithms that can achieve robustness to noisy training labels while general-
izing to clean data. These algorithms often incorporate sophisticated techniques,
such as noise modeling, label correction, and co-training. In this study, we demon-
strate that a simple baseline using cross-entropy loss, combined with widely used
regularization strategies like learning rate decay, model weights average, and data
augmentations, can outperform state-of-the-art methods. Our findings suggest that
employing a combination of regularization strategies can be more effective than
intricate algorithms in tackling the challenges of learning with noisy labels. While
some of these regularization strategies have been utilized in previous noisy label
learning research, their full potential has not been thoroughly explored. Our results
encourage a reevaluation of benchmarks for learning with noisy labels and prompt
reconsideration of the role of specialized learning algorithms designed for training
with noisy labels.

1 Introduction

Deep neural networks (DNNs) have become an essential tool for supervised learning tasks, and
achieved remarkable progress in a wide range of pattern recognition tasks [20, 14, 42, 10]. These
models tend to be trained on large curated datasets with high-quality annotations. Unfortunately, in
many real-world applications such datasets are not available. However, datasets with lower-quality
annotations, obtained from search engines or web crawlers [45, 54], may be available. When trained
on these datasets, DNNs tend to overfit to the noisy labels, a consequence of overparameterization.
This overfitting subsequently hampers DNNs’ ability to generalize effectively, undermining their
overall performance.

Recently, significant advances [41, 16, 36, 17, 55, 52, 56] have been made to tackle the label noise
problem using the ideas of modeling noise-label transition matrix [38, 50, 52, 57, 33], label correc-
tion/refurbishment [40, 45, 63, 6, 31], co-training [25, 17, 60], etc. These works often proceed with
different assumptions regarding noise distributions or present sophisticated techniques to refurbish
labels. Some other works are devoted to designing loss functions [62, 48, 35] and regularizations
[33, 64] to prevent overfitting to label noise, and show better generalization ability. It is worth noting
that almost all of these methods have adopted some de facto techniques for training modern neural
networks e.g. learning rate decay, data augmentations, weight decay, etc. Focusing on tasks with
noisy labels, a question that is naturally raised is how effective de facto regularization strategies are
in achieving robustness to label noise?
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Figure 1: Overview of the proposed regularized cross-entropy (RegCE) method. The model is trained
with a cross-entropy loss and some de facto regularization strategies: weak and strong augmentations,
and multi-step learning rate decay. During training, the augmented data are fed into the model, the
learning rate is large and scheduled to sharply decrease when training loss stops improving. The
EMA model is updated as the exponential moving average of the model weights and adopted offline
for testing.

In this paper, we propose an extremely simple baseline that suggests de facto regularization techniques
can be more powerful for noisy classification tasks than the current crop of complicated algorithms
dedicated to label noise. Our baseline consists of a set of regularization strategies. First, we use a
sharp learning rate decay, where an initially large learning rate is used to avoid fitting noisy data,
followed by a sharp decay to learn more complex patterns. Second, we adopt data augmentations with
stronger transformation policies, including transformations such as cutout [11], grayscale, color jitter,
and Gaussian blur, etc. Third, we average model weights to smooth out variations during training.

Specifically, employing the three aforementioned regularization strategies, we train a DNN model
using a standard cross-entropy loss with stochastic gradient descent (SGD) on noisily labeled
datasets. We refer to this baseline method as Regularized Cross-Entropy (RegCE). Figure 1 provides
an overview of the proposed RegCE. RegCE offers a contrast to current state-of-the-art methods
[29, 32, 33, 2], which often involve more complex mechanisms. It is worth noting that current
prevailing methods frequently adopt semi-supervised learning techniques to enhance performance.
Therefore, we investigate the potential benefits of incorporating semi-supervised learning techniques
into our method. In this exploration, we classify confident samples as labeled data and the remaining
samples as unlabeled data, aligning with the practices employed by current state-of-the-art models.
In summary, our main contributions are as follows:

• We propose a surprisingly simple baseline for learning with noisy labels, which achieves the
state-of-the-art. This baseline suggests that many recent noisy label robust algorithms are no better
than simply adopting multiple de facto regularization strategies together.

• We show that the simple baseline is a good base model for which the performance can be further
improved by semi-supervised learning techniques.

• We support our findings with extensive empirical results on a variety of datasets with synthetic and
real-world label noise.

2 Related Work

Learning with Noisy Labels. Recent advances in training with noisy label use varying strategies
of noise-modeling and noise-modeling free approaches.

Model-based methods [38, 50, 52, 57, 33] strive to establish the relationships between noisy and
clean labels, based on the assumption that the noisy label originates from a conditional probability
distribution over the true labels. As a result, the primary goal of these methods is to estimate the
underlying noise transition probabilities. Ref. [16] employed a noise adaptation layer on top of
a classification model to learn the transition probabilities. T-revision [53] introduced fine-tuned
slack variables to estimate the noise transition matrix without anchor points. Additionally, Ref. [33]
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proposed modeling label noise using a sparse over-parameterized term. These methods often assume
certain characteristics about the noisy label distribution which may not hold for real-world data.

In contrast to directly modeling the noisy labels, noise-modeling free methods [29, 50, 32] aim
to leverage the memorization effect of deep models to mitigate the negative impact of the noisy
labels. Co-teaching [17] employs two deep networks to train each other using small-loss instances
in mini-batches. ELR [32] proposes regularizing training using model outputs at the early stage of
training. PES [2] selects different early stopping strategies for various layers of the deep model.
Moreover, PADDLES [23] proposes early stop at different stages for phase and amplitude spectrums
of features. Despite the effectiveness of these approaches, they are often equipped with complex
training steps such as two-network training, or dedicated methodology design for training with label
noise.

Regularization Techniques for Training Modern Neural Networks. When training deep neural
networks, it is often important to control overfitting with the helps from different forms of regulariza-
tion techniques. Regularization can be implicit and explicit. Explicit regularization techniques, such
as dropout [46] and weight decay [34], reduce the effective capacity of the model. When noise is
present, learning rate as “the single most important hyper-parameter” [3] is shown to be an effective
regularizer [30]. A large initial learning rate is able to help escape spurious local minima that do
not generalize [28, 26] and avoid overfitting noisy data [30, 59]. As another explicit regularization,
average network weights along the trajectory of training is shown to find flatter minima and lead
to better generalization [24, 47]. In contrast, data augmentation [39], as an implicit regularization,
improves generalization by increasing the diversity of training examples without modifying the
model’s effective capacity [22]. Focusing on training with label noise, regularization techniques
mentioned above are all widely used in state-of-the-art methods [32, 37] as a default setting without
exploiting their full potential.

3 Proposed Method

In the context of learning with noisy labels, the true distribution of training data is typically represented
by D = {(x, y) |x ∈ X , y ∈ 1, . . . ,K}. Here, X denotes the sample space, and 1, . . . ,K represents
the label space consisting of K classes. However, due to label errors during data collection and
dataset construction, the actual distribution of the label space is often unknown. Therefore, we have
to rely on a noisy dataset D̃ = {(x, ỹ) |x ∈ X , ỹ ∈ 1, . . . ,K} with corrupted labels ỹ to train the
model. Our goal is to develop an algorithm that can learn a robust deep classifier from these noisy
data to accurately classify query samples.

In the following, we first elaborate on the regularization strategies we suggest to be incorporated
with standard training with cross-entropy loss: sharp learning rate decay schedule, strong and weak
augmentations, and model weight moving average. Then, based on this regularized cross-entropy
model, we present a learning algorithm that learns with consistent examples and semi-supervised
learning techniques.

3.1 Sharp Learning Rate Decay

Neural networks, due to their impressive model capacities, may inadvertently memorize and overfit
noisy labels while training. As demonstrated by [59], a larger initial learning rate can effectively
suppress this unwanted noise memorization in the input samples. Our empirical observations affirm
that this regularization effect also extends to noise present in labels. As depicted in Figure 2 (b),
when a large initial learning rate (set to 0.1) is used, the loss of clean samples decreases while the
loss associated with noisy samples remains high. This indicates that the noise is not fully absorbed
when the learning rate is large.

However, to optimize the fitting of clean labels and the learning of complex task-specific patterns,
a reduction in the learning rate is required. We investigated various learning rate decay schedules
commonly utilized in neural network training: cosine annealing decay, step decay, and gradual decay.
Our findings suggest that a gradual decrease in the learning rate could lead the network to converge to
a non-generalizable, sharp local minimum, as demonstrated in Figure 2 (c). Interestingly, we found
that a sudden, sharp decrease in the learning rate could potentially enable the model to escape these
spurious local minima, as depicted in Figure 2 (c, d).
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(a) Learning rate schedules (b) Small/large learning rate
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(c) Loss surface sharpness (d) Generalization performance
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Figure 2: Comparison among different learning rate schedules. Figure (a) shows different learning
schedules. The learning rate is set to be a constant with large (= 0.1) and small (= 0.001) values,
or is decayed at the same iteration of training, while in two different ways: suddenly decayed or
gradually decayed in a cosine curve. Figure (b) illustrates the average training loss of examples with
clean and noisy labels with a constant learning rate. When the learning rate is large (= 0.1), cleanly
labeled examples are fitted better than noisily labeled examples, while the learning rate is small
(= 0.001), the noise is fitted faster, suggesting that a large initial learning rate can avoid overfitting to
label noise. Figure (c) shows the sharpness of the loss surface under different learning rate schedules.
Sharp learning rate decay may find minima with lower sharpness and better generalization. Figure
(d) demonstrates the better generalization of sharply decaying the learning rate. Results from a
ResNet-18 trained on CIFAR100 with 80% symmetric noise.

Hence, we recommend implementing a sharp learning rate decay strategy, where the learning rate is
abruptly reduced to 1% of the original value once the training loss has stabilized. This is followed by
another swift reduction of 1% after a few epochs of training. Our proposed learning rate scheduler,
termed as the sharp learning rate decay schedule, exhibits robustness against label noise, as shown in
Figure 2 (d).

3.2 Data Augmentations

Data augmentation, a broadly accepted approach for expanding datasets, is renowned for its ability
to enhance model generalization and robustness [8, 9, 21]. This technique entails applying diverse
transformations to input data, thereby producing realistically viable variations. The gamut of these
transformations spans from straightforward alterations like random cropping and flipping to more
intricate operations such as cutout [12] or image mixing [61]. The gradations of these augmentations’
complexity and intensity allow us to classify them into two categories: “weak” and “strong”.

Weak augmentations are designed to introduce more subtle variations in the data, thereby ensuring a
steady learning trajectory. Conversely, strong augmentations are tailored to incorporate more pro-
nounced data variations, thus challenging the model to glean more robust and generalizable features.
Nevertheless, when learning with noisy labels, weak augmentations often fall short in preventing
model overfitting, while the distortions induced by strong augmentations could significantly alter
image structures, complicating the learning process for the model.
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Table 1: Comparison of test accuracy using different methods on CIFAR-10 and CIFAR-100 datasets
with varying noise types and levels. The baseline results are taken from [58]. We use ResNet18 as
the architecture, whereas all other methods in the comparison use PreAct ResNet18. The mean and
standard deviation over 3 runs are reported. The best results are highlighted in bold.

Dataset Method Symmetric Asymmetric
20% 40% 60% 80% 40%

CIFAR-10

CE 88.51±0.17 82.73±0.16 76.26±0.29 59.25±1.01 83.23±0.59
Forward 88.87±0.21 83.28±0.37 75.15±0.73 58.58±1.05 82.93±0.74

GCE 91.22±0.25 89.26±0.34 85.76±0.58 70.57±0.83 82.23±0.61
Co-teaching 92.05±0.15 87.73±0.17 85.10±0.49 44.16±0.71 77.78±0.59

LIMIT 89.63±0.42 85.39±0.63 78.05±0.85 58.71±0.83 83.56±0.70
SLN 88.77±0.23 87.03±0.70 80.57±0.50 63.99±0.79 81.02±0.25
SL 92.45±0.08 89.22±0.08 84.63±0.21 72.59±0.23 83.58±0.60

APL 92.51±0.39 89.34±0.33 85.01±0.17 70.52±2.36 84.06±0.20
CTRR 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52 89.00±0.56

RegCE (ours) 93.77±0.15 92.23±0.19 87.51±0.32 77.40±0.41 92.18±0.23

CIFAR-100

CE 60.57±0.53 52.48±0.34 43.20±0.21 22.96±0.84 44.45±0.37
Forward 58.72±0.54 50.10±0.84 39.35±0.82 17.15±1.81 -

GCE 68.31±0.34 62.25±0.48 53.86±0.95 19.31±1.14 46.50±0.71
Co-teaching 65.71±0.20 57.64±0.71 31.59±0.88 15.28±1.94 -

LIMIT 58.02±1.93 49.71±1.81 37.05±1.39 20.01±0.11 -
SLN 55.35±1.26 51.39±0.48 35.53±0.58 11.96±2.03 -
SL 66.46±0.26 61.44±0.23 54.17±1.32 34.22±1.06 46.12±0.47

APL 68.09±0.15 63.46±0.17 53.63±0.45 20.00±2.02 52.80±0.52
CTRR 70.09±0.45 65.32±0.20 54.20±0.34 43.69±0.28 54.47±0.37

RegCE (ours) 74.84±0.15 70.18±0.21 62.91±0.68 47.07±0.25 66.76±0.25

In light of these challenges, we propose an effective augmentation strategy that satisfies two primary
conditions: (1) it enhances the model’s generalization capabilities and mitigates the overfitting to
noisy labels, and (2) it preserves the model’s loss modeling and convergence properties without
causing harmful impact. Our approach amalgamates the benefits of weak and strong augmentations
to strike a balance between these requirements. Weak augmentations contribute to stability, while
strong augmentations foster model robustness and resilience against noisy labels. This dual strategy
is designed to harness the strengths of both augmentation types, ultimately boosting the model’s
performance when learning with noisy labels.

3.3 Model Weights Average

A unique challenge of learning with noisy labels often arises from the sequential fitting of the model to
clean labeled samples, noisy labeled samples, and eventually, overfitting to all noisy samples [1, 32].
This progression frequently culminates in suboptimal generalization performance. To counteract this
issue, we turned to the model weights averaging technique, derived from bootstrapping [13]. This
powerful tool enhances model stability and boosts generalization performance [24, 27, 44, 47], by
aggregating model weights from different stages of training.

Notably, this regularization draws on the insight from [24] that model weights averaging can facilitate
the model’s escape from local minima and guide it towards wider optima in the loss landscape.
These wider optima represent more robust solutions and are associated with enhanced generalization
performance. This feature is particularly beneficial when dealing with noisy labels, as it bolsters the
model’s robustness against label noise.

In this work, we adopted the exponential moving average (EMA) [18] as our model weights averaging
strategy. As illustrated in Figure 1, during training, we updated the online model using gradient
back-propagation, while the offline EMA model was updated using the exponential moving average
of the online model weights. The offline model is used as our final model for evaluation. This strategy,
paying substantial attention to the early model weights primarily learned on clean labeled samples,
helps preserve the model’s capacity to classify clean samples accurately, a significant advantage when
noisy labels are subsequently introduced afterward during training.
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Table 2: Comparison of test accuracy using different methods under semi-supervised learning of
confident examples on CIFAR-10 and CIFAR-100 datasets with varying noise types and levels. The
baseline results are taken from [2]. All methods use ResNet18 as the base model. The mean and
standard deviation over 3 runs are reported. The best results are highlighted in bold.

Method CIFAR-10 CIFAR-100
20% 50% 80% 20% 50% 80%

CE 86.5±0.6 80.6±0.2 63.7±0.8 57.9±0.4 47.3±0.2 22.3±1.2
MixUp 93.2±0.3 88.2±0.3 73.3±0.3 69.5±0.2 57.1±0.6 34.1±0.6

DivideMix 95.6±0.1 94.6±0.1 92.9±0.3 75.3±0.1 72.7±0.6 56.4±0.3
ELR + 94.9±0.2 93.6±0.1 90.4±0.2 75.5±0.2 71.0±0.2 50.4±0.8

PES (semi) 95.9±0.1 95.1±0.2 93.1±0.2 77.4±0.3 74.3±0.6 61.6±0.6
RegCE + semi (ours) 96.8±0.1 96.0±0.1 93.5±0.1 80.5±0.3 77.3±0.2 66.4±0.1

3.4 Combining with Semi-Supervised Learning

Currently, methods proposed for training with noisy labels often incorporate semi-supervised tech-
niques to boost model performance [33, 32, 29]. Existing methods usually divide the dataset into
confident samples and unconfident samples based on the model’s predictions. Confident samples
are used as labeled samples while unconfident samples are used as unlabeled samples. In order
to successfully use these techniques, the reliability of a base model’s prediction is vital. We show
that our simple baseline RegCE is able to provide more accurate information to guide training in
semi-supervised learning, which further boosts the model performance.

Following Ref. [2], we obtain two views of the original inputs by data augmentations. We then use
RegCE-trained model to obtain the predictions of the two views. We consider the samples in which
the model’s predictions are consistent between the two views and consistent to the label as labeled
data and other inconsistent samples as unlabeled data. Once the data is divided into labeled and
unlabeled subsets, we apply semi-supervised learning approach MixMatch [4] to train the final model.

4 Experiment

4.1 Datasets and Implementation Details

Datasets: We evaluate our method on two synthetic datasets with different noise types and levels,
CIFAR-10 and CIFAR-100[15], as well as three real-world datasets, CIFAR-N[49], Animal-10N[45]
and Clothing-1M[54]. CIFAR-10 and CIFAR100 both contain 50k training images and 10k testing
images, each with a size of 32×32 pixels. CIFAR-10 has 10 classes, while CIFAR-100 contains
100 classes. The original labels of these two datasets are clean. CIFAR-N consists of re-annotated
versions of CIFAR-10 and CIFAR-100 by human annotators. Specifically, CIFAR-10N contains
three submitted label sets (i.e., Random 1, 2, 3) which are further combined to have an Aggregate
and a Worst label. CIFAR-100N contains a single human annotated label set named Noisy Fine.
Animal-10N has 10 animal classes with 50k training images and 5k test images, each with a size of
64×64 pixels. Its estimated noise rate is around 8%. Clothing-1M has 1 million training images and
10k test images with 14 classes crawled from online shopping web sites.

Synthetic Noise: Following previous works[17, 32, 51, 38], we explore two different types of
synthetic noise with different noise levels for both CIFAR-10 and CIFAR-100 datasets. For symmetric
label noise in both datasets, each label has the same probability of being flipped to any class, and we
randomly select a certain percentage of training data to have their labels flipped, with the range being
{20%, 40%, 50%, 60%, 80%}. For asymmetric label noise in CIFAR-10, we follow the labeling rule
proposed in [38], where we flip labels between TRUCK → AUTOMOBILE, BIRD → AIRPLANE,
DEER → HORSE, and CAT ↔ DOG. We randomly choose 40% of the training data and flip their
labels according to the asymmetric labeling rule. For asymmetric label noise in CIFAR-100, we also
randomly select 40% of the training data and flip their labels to the next class in the label space.

Baseline Methods: Semi-supervised learning (SSL) can significantly enhance performance. For
fairness, we compare our proposed RegCE with and without SSL techniques separately.

For comparison without SSL, we primarily compare RegCE with several robust loss function methods:
1) Cross entropy loss. 2) Forward[38], which corrects loss values using an estimated noise transition
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Table 3: Comparison of test accuracy using different methods on real-world datasets Animal-10N and
Clothing-1M. The baseline results are taken from [58]. All methods use ResNet18 as the base model.
The mean and standard deviation over 3 runs are reported. The best results are highlighted in bold.

Method Animal-10N Clothing-1M

CE 83.18±0.15 70.88±0.45
Forward 83.67±0.31 71.23±0.39

GCE 84.42±0.39 71.34±0.12
Co-teaching 85.73±0.27 71.68±0.21

SLN 83.17±0.08 71.17±0.12
SL 83.92±0.28 72.03±0.13

APL 84.25±0.11 72.18±0.21
CTRR 86.71±0.15 72.71±0.19

RegCE (ours) 88.31±0.15 73.75±0.09

matrix. 3) GCE[62], which takes advantage of both MAE loss and CE loss and designs a robust
loss function. 4) Co-teaching[17], which maintains two networks and uses small-loss examples for
updates. 5) LIMIT[19], which introduces noise to gradients to avoid memorization. 6) SLN[5], which
adds Gaussian noise to noisy labels to combat label noise. 7) SL[48], which employs CE loss and a
reverse cross entropy loss (RCE) as a robust loss function. 8) APL (NCE+RCE)[35], which combines
two mutually boosted robust loss functions for training. 9) CTRR[58], which proposes a novel
contrastive regularization function to address the memorization issue and achieves state-of-the-art.

For comparison with SSL, we utilize the previously mentioned RegCE+semi method, which incorpo-
rates MixMatch[4], to compare it with other state-of-the-art LNL methods that are also combined
with SSL techniques: 1) DivideMix[29], which first leverages SSL and a mixture model to effectively
handle noisy labels. 2) CORES[7], which proposes a novel sample sieve framework to effectively
identify and remove noisy instances during training. 3) ELR[32], which utilizes the early-learning
phenomenon to counteract the influence of the noisy labels on the gradient of the CE loss. 4) PES[2],
which presents a progressive early stopping method to better exploit the memorization effect of
DNNs. 5) SOP[33], which models the label noise, and exploit implicit algorithmic regularizations to
recover and separate the underlying corruptions.

Implementation Details: For a balanced comparison, we employed ResNet18[20] as the foundational
architecture for all datasets. The sole exception was for the CIFAR-N dataset, for which we utilized
ResNet34[20]. Our training parameters were set as follows: a batch size of 256, an initial learning
rate of 0.1, and we implemented the SGD optimizer with a momentum of 0.9 and a weight decay of
5e-4. All experiments were conducted over a total of 200 epochs when not utilizing SSL techniques,
and extended to 300 epochs when incorporating SSL techniques. Specifically, for experiments devoid
of SSL, the learning rate was drastically reduced to 1% of the initial value when the training loss
plateaued, and dropped another 1% after a few subsequent epochs of training. For experiments
employing SSL, we initially trained for 100 epochs using RegCE to procure a robust initial model,
which was then used to generate high-quality confident samples. These confident samples were then
used for an additional 200 epochs of training, using the semi-supervised learning method MixMatch,
as proposed in [4]. To stabilize the training process across all experiments, we used the exponential
moving average (EMA)[24]. Reported results are the mean and standard deviation computed over
three independent runs. Further implementation details can be found in the Supplementary Material.

4.2 Classification Performance Analysis

Results on Synthetic Datasets: As shown in Table 1, the proposed RegCE method was evaluated
on the CIFAR-10 dataset under varying levels of label noise, achieving peak accuracy scores at
noise levels of 20% and 40%. Even when the noise level increased to 60%, RegCE sustained its
performance and continued to yield results comparable to those of CTRR at an extreme noise level of
80%. When applied to the CIFAR-100 dataset, RegCE consistently outperformed all other methods
across all noise levels. For instance, at a noise level of 20%, it achieved an accuracy of 74.84%,
markedly higher than CTRR’s 70.09%. This performance trend was maintained up to a noise level of
80%, where RegCE achieved an accuracy of 47.07%, exceeding CTRR by more than three percentage
points. The results validate the effectiveness of RegCE as a strong baseline in addressing label noise.
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Table 4: Comparison of test accuracy using different methods on real-world dataset CIFAR-N. The
baseline results are taken from the leaderboard in [49]. All methods use ResNet34 as the base model,
except for SOP+ which uses PreAct ResNet18. The mean and standard deviation over 3 runs are
reported. The best results are highlighted in bold.

Method CIFAR-10N CIFAR-100N
Random 1 Random 2 Random 3 Aggregate Worst Noisy Fine

CE 85.02±0.65 86.46±1.79 85.16±0.61 87.77±0.38 77.69±1.55 55.50±0.66
Forward 86.88±0.50 86.14±0.24 87.04±0.35 88.24±0.22 79.79±0.46 57.01±1.03

T-revision 88.33±0.32 87.71±1.02 87.79±0.67 88.52±0.17 80.48±1.20 51.55±0.31
Co-Teaching 90.33±0.13 90.30±0.17 90.15±0.18 91.20±0.13 83.83±0.13 60.37±0.27

ELR+ 94.43±0.41 94.20±0.24 94.34±0.22 94.83±0.10 91.09±1.60 66.72±0.07
CORES* 94.45±0.14 94.88±0.31 94.74±0.03 95.25±0.09 91.66±0.09 55.72±0.42

DivideMix 95.16±0.19 95.23±0.07 95.21±0.14 95.01±0.71 92.56±0.42 71.13±0.48
PES (semi) 95.06±0.15 95.19±0.23 95.22±0.13 94.66±0.18 92.68±0.22 70.36±0.33

SOP+ 95.28±0.13 95.31±0.10 95.39±0.11 95.61±0.13 93.24±0.21 67.81±0.23
RegCE+semi (ours) 96.55±0.03 96.51±0.08 96.69±0.07 96.41±0.20 94.80±0.07 74.28±0.22

As detailed in Table 2, under the semi-supervised learning scenario, our method, RegCE+semi,
consistently achieved the highest accuracy across all noise levels on both the CIFAR-10 and CIFAR-
100 datasets. This result is noteworthy, considering the increased complexity of CIFAR-100 compared
to CIFAR-10. For instance, at an extreme noise level of 80% on the CIFAR-100 set, RegCE+semi
attained an accuracy of 66.4%, a score notably higher than the next best performing method, PES
(semi), which reached 61.6%. These results suggest that our method can effectively utilize more
accurate information to guide the training process in a semi-supervised learning environment.

Results on Real-world Datasets: Table 3 illustrates the superior performance of our proposed
RegCE method on the Animal-10N and Clothing-1M datasets, compared to several baseline methods.
By consistently outperforming all other methods, RegCE achieves the highest test accuracy of 88.31%
and 73.75% on Animal-10N and Clothing-1M, respectively.

The efficacy of our RegCE+semi method is further highlighted in Table 4 on the CIFAR-N dataset,
under a variety of label noise scenarios. Across all settings, RegCE+semi consistently secures the
highest test accuracy. Notably, in the “Worst” scenario, characterized by the highest noise levels,
our method excels above all others. Moreover, even under the demanding “Noisy Fine” scenario,
RegCE+semi manages to maintain the highest accuracy, demonstrating its robustness and resilience
against complex noise structures.

4.3 Ablation Studies

In this section, we conduct ablation studies to analyze how each component affects the training
with label noise performance. We study the three regularization strategies of our method: (a) we
choose an initially large learning rate and then suddenly decay it to 1% of the original value when the
training loss does not improve; (b) we choose to apply both strong and weak augmentation together.
We observe that solely using either weak or strong augmentation results in worse performance, and
(c) we average the model’s weight during training and use this averaged model for evaluation. We
also evaluate the model’s sensitivity to hyperparameters such as initial learning rate, weight moving
average momentum, etc. (see details in the appendix).

Table 5 shows the results of our ablation studies on CIFAR-100 with 80% of symmetric label noise. In
general, each regularization strategy provides a performance boost, and the model is best performed
with all three strategies used together. Figure 4 shows that solely using weak augmentation results in
overfitting to label noise while strong augmentation results in slow convergence, both result in worse
performance.

Figure 3 illustrates the impact of learning rate decay schedules on models using Grad-CAM. Models
robust to label noise consistently maintain Grad-CAM output during training when guided by the
true label (middle row). Label noise may drive the model to absorb irrelevant background features.
When label noise is minimal, the model accurately focuses on relevant features (top row). However,
increasing label noise can misdirect the model’s attention, lowering performance. A well-selected
decay schedule can mitigate the effect of noisy labels, leading to a more task-focused model. Thus, a
robust model can maintain consistent Grad-CAM output during training, emphasizing correct input
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Figure 3: Grad-CAM [43] results for different epochs of a ResNet-18 model trained on CIFAR-10.
The top row presents the Grad-CAM of the model trained with true labels. The middle row shows
results on 80% of symmetric noise with the proposed sharp learning rate decay. The bottom row
represents the results on the same noisy dataset while with gradual learning rate decay.

regions despite label noise. Further research is needed to better understand the relationship between
learning rate decay schedules, label noise, and model attention mechanisms for developing more
robust models.

Table 5: Ablation study evaluating the influence of sharp
learning decay, strong and weak augmentations, and model
moving average. The mean accuracy computed over three
noise realizations is reported.

Method

LR ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓
Aug ✗ ✗ ✓ ✗ ✓ ✗ ✓ ✓

EMA ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓

Test Acc. 31.76 41.15 36.82 40.02 45.05 44.14 43.09 47.82
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Figure 4: The performance comparison
of different strategies of augmentations.

5 Conclusion

In this paper, we introduced RegCE, an extremely simple baseline method for learning with noisy
labels that adopts several conventional regularization strategies. We demonstrated that this straightfor-
ward approach could match, and often outperform, the current state-of-the-art complex mechanisms
developed specifically to tackle label noise. Our findings underline the surprising power of de facto
regularization techniques such as multi-step learning rate decay, extensive data augmentation, and
model weight averaging. These techniques, when combined, showed to be effective in enhancing
the robustness of neural networks against label noise, which is often an overlooked aspect in the
current literature. Furthermore, we explored the potential of incorporating semi-supervised learning
techniques into our baseline method, which can further boost the performance. Our extensive empiri-
cal results on various datasets, both synthetic and real-world, further corroborate our claims. These
findings motivate a rethinking of the prevalent complex approaches toward label noise and call for
further exploration of the effectiveness of these simple regularization strategies for training with label
noise. Future work could extend the application of our baseline method to other domains and tasks,
as well as investigate other potential de facto regularization techniques that could further enhance the
robustness of neural networks against label noise.

Limitations The primary limitation is that we only test the method’s potential when combined with
semi-supervised learning techniques. In fact, the baseline method could potentially leverage other
techniques like self-supervised learning, which does not require labels during training. Additionally,
it’s worth noting that while our method is not explicitly tailored for Convolutional Neural Networks
(ConvNets), the majority of our experiments were conducted on ConvNets. Therefore, further
investigation is necessary to assess its performance on alternative architectural models such as
transformers.

Broader Impact This work holds promise in pushing forward the progress of machine-learning
techniques that can be used in situations where collecting precise annotations is expensive. This is
particularly crucial in domains like medicine, where machine learning has immense potential for
making a positive impact on society.
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The appendix is organized as follows:

• In Appendix A, we report ablation studies on the influence of different hyperparameters of RegCE.

• In Appendix B, we describe the implementation details of our proposed method RegCE, including
a description of the data preprocessing and various training settings.

A Ablation Studies
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Figure 5: The hyperparameter ablation studies of sharp learning rate decay and model moving average.
Results from a ResNet-18 model trained on the CIFAR-100 dataset with 80% symmetric label noise.

Figure 5(a) presents the correlation between the learning rate (lr) decay rate and the corresponding
test accuracy. It shows the fact that, after a period of training with a large learning rate, it becomes
crucial to reduce the learning rate significantly. This strategy enables the model to better fit clean
labels and discern complex patterns for the task, thereby boosting test accuracy. Figure 5(b) focuses
on studying the impact of the sharp decay point. It shows that the model requires more training in the
early stages to learn the data’s features and patterns. Starting the decay too early may prevent the
model from fully learning during this critical phase, resulting in decreased performance. Only by
initiating the decay at the appropriate time can the model effectively leverage the training data and
enhance performance. Figure 5(c) presents the momentum value of EMA model how to effect the test
accuracy. Selecting an appropriate EMA momentum value is crucial. A low momentum value may
cause the model to react too quickly to new model weights, potentially overfitting to recent trends
and ignoring longer-term patterns. Conversely, a high momentum value may cause the model to react
too slowly, potentially underfitting and not adequately capturing recent trends.

B Training Details

B.1 Data Preprocessing

Our preprocessing procedures for all datasets incorporate a combination of weak and strong aug-
mentation techniques. Weak augmentations include random cropping and flipping, while strong
augmentations comprise cutout, grayscale transformations, color jitter, and Gaussian blur. In addition
to these, for experiments involving semi-supervised learning methodologies, we also utilize mixup,
a vital element of the MixMatch technique. We perform two rounds of data augmentation on each
image in a mini-batch of N images, where N is set to 128 in all experiments. This results in a larger
batch size, that is, 2N images, serving as input to the model. These two rounds of augmentation
serve different purposes: one for weak augmentations and the other for strong augmentations. As
described in the main body of the paper, weak augmentations contribute to stability, while strong
augmentations foster model robustness and resilience against label noise.

B.2 Training Settings

For our research, we employed datasets of CIFAR-10, CIFAR-100, CIFAR-N, and Animal-10N,
utilizing the entirety of the training data for each epoch. For these datasets, we initiated the process
with a randomly initialized model and established an initial learning rate of 0.1. In the case of the
Clothing-1M dataset, we aimed for a fair comparison consistent with the methodology used in [58].
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To this end, we randomly selected a balanced subset of 20.48K images from the noisy training data
for every epoch, implemented an ImageNet pre-trained ResNet18 model, and set the initial learning
rate to 0.01.

In conducting experiments utilizing semi-supervised learning methodologies, we employ confident
samples as labeled data, and unconfident samples as unlabeled data. It’s important to note that the
proportion of confident to unconfident samples can vary substantially depending on the noise levels
in the settings. To tackle the potential issue of class imbalance, we also adopt a class balance strategy,
following the approach outlined in [2]. The difference is that we use class-balanced samplers for
the data loaders, and sample the data to the same amount of the original data. With regards to the
subsequent training process, we adhere to the original MixMatch[4] settings. Specifically, we set
K = 2, T = 0.5, α = 0.75, with λu chosen from the set {5, 75, 150}.
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